3.16 \(\int \frac{1}{\csc ^{\frac{7}{2}}(a+b x)} \, dx\)

Optimal. Leaf size=90 \[ \frac{10 \sqrt{\sin (a+b x)} \sqrt{\csc (a+b x)} \text{EllipticF}\left (\frac{1}{2} \left (a+b x-\frac{\pi }{2}\right ),2\right )}{21 b}-\frac{2 \cos (a+b x)}{7 b \csc ^{\frac{5}{2}}(a+b x)}-\frac{10 \cos (a+b x)}{21 b \sqrt{\csc (a+b x)}} \]

[Out]

(-2*Cos[a + b*x])/(7*b*Csc[a + b*x]^(5/2)) - (10*Cos[a + b*x])/(21*b*Sqrt[Csc[a + b*x]]) + (10*Sqrt[Csc[a + b*
x]]*EllipticF[(a - Pi/2 + b*x)/2, 2]*Sqrt[Sin[a + b*x]])/(21*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0383128, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {3769, 3771, 2641} \[ -\frac{2 \cos (a+b x)}{7 b \csc ^{\frac{5}{2}}(a+b x)}-\frac{10 \cos (a+b x)}{21 b \sqrt{\csc (a+b x)}}+\frac{10 \sqrt{\sin (a+b x)} \sqrt{\csc (a+b x)} F\left (\left .\frac{1}{2} \left (a+b x-\frac{\pi }{2}\right )\right |2\right )}{21 b} \]

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]^(-7/2),x]

[Out]

(-2*Cos[a + b*x])/(7*b*Csc[a + b*x]^(5/2)) - (10*Cos[a + b*x])/(21*b*Sqrt[Csc[a + b*x]]) + (10*Sqrt[Csc[a + b*
x]]*EllipticF[(a - Pi/2 + b*x)/2, 2]*Sqrt[Sin[a + b*x]])/(21*b)

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\csc ^{\frac{7}{2}}(a+b x)} \, dx &=-\frac{2 \cos (a+b x)}{7 b \csc ^{\frac{5}{2}}(a+b x)}+\frac{5}{7} \int \frac{1}{\csc ^{\frac{3}{2}}(a+b x)} \, dx\\ &=-\frac{2 \cos (a+b x)}{7 b \csc ^{\frac{5}{2}}(a+b x)}-\frac{10 \cos (a+b x)}{21 b \sqrt{\csc (a+b x)}}+\frac{5}{21} \int \sqrt{\csc (a+b x)} \, dx\\ &=-\frac{2 \cos (a+b x)}{7 b \csc ^{\frac{5}{2}}(a+b x)}-\frac{10 \cos (a+b x)}{21 b \sqrt{\csc (a+b x)}}+\frac{1}{21} \left (5 \sqrt{\csc (a+b x)} \sqrt{\sin (a+b x)}\right ) \int \frac{1}{\sqrt{\sin (a+b x)}} \, dx\\ &=-\frac{2 \cos (a+b x)}{7 b \csc ^{\frac{5}{2}}(a+b x)}-\frac{10 \cos (a+b x)}{21 b \sqrt{\csc (a+b x)}}+\frac{10 \sqrt{\csc (a+b x)} F\left (\left .\frac{1}{2} \left (a-\frac{\pi }{2}+b x\right )\right |2\right ) \sqrt{\sin (a+b x)}}{21 b}\\ \end{align*}

Mathematica [A]  time = 0.165642, size = 65, normalized size = 0.72 \[ -\frac{\sqrt{\csc (a+b x)} \left (40 \sqrt{\sin (a+b x)} \text{EllipticF}\left (\frac{1}{4} (-2 a-2 b x+\pi ),2\right )+26 \sin (2 (a+b x))-3 \sin (4 (a+b x))\right )}{84 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]^(-7/2),x]

[Out]

-(Sqrt[Csc[a + b*x]]*(40*EllipticF[(-2*a + Pi - 2*b*x)/4, 2]*Sqrt[Sin[a + b*x]] + 26*Sin[2*(a + b*x)] - 3*Sin[
4*(a + b*x)]))/(84*b)

________________________________________________________________________________________

Maple [A]  time = 1.198, size = 104, normalized size = 1.2 \begin{align*}{\frac{1}{\cos \left ( bx+a \right ) b} \left ({\frac{2\,\sin \left ( bx+a \right ) \left ( \cos \left ( bx+a \right ) \right ) ^{4}}{7}}+{\frac{5}{21}\sqrt{\sin \left ( bx+a \right ) +1}\sqrt{-2\,\sin \left ( bx+a \right ) +2}\sqrt{-\sin \left ( bx+a \right ) }{\it EllipticF} \left ( \sqrt{\sin \left ( bx+a \right ) +1},{\frac{\sqrt{2}}{2}} \right ) }-{\frac{16\, \left ( \cos \left ( bx+a \right ) \right ) ^{2}\sin \left ( bx+a \right ) }{21}} \right ){\frac{1}{\sqrt{\sin \left ( bx+a \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/csc(b*x+a)^(7/2),x)

[Out]

(2/7*sin(b*x+a)*cos(b*x+a)^4+5/21*(sin(b*x+a)+1)^(1/2)*(-2*sin(b*x+a)+2)^(1/2)*(-sin(b*x+a))^(1/2)*EllipticF((
sin(b*x+a)+1)^(1/2),1/2*2^(1/2))-16/21*cos(b*x+a)^2*sin(b*x+a))/cos(b*x+a)/sin(b*x+a)^(1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\csc \left (b x + a\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)^(7/2),x, algorithm="maxima")

[Out]

integrate(csc(b*x + a)^(-7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\csc \left (b x + a\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)^(7/2),x, algorithm="fricas")

[Out]

integral(csc(b*x + a)^(-7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\csc \left (b x + a\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/csc(b*x+a)^(7/2),x, algorithm="giac")

[Out]

integrate(csc(b*x + a)^(-7/2), x)